Multi-objective calibration of forecast ensembles using Bayesian model averaging

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Using Bayesian Model Averaging to Calibrate Forecast Ensembles

Ensembles used for probabilistic weather forecasting often exhibit a spread-skill relationship, but they tend to be underdispersive. This paper proposes a principled statistical method for postprocessing ensembles based on Bayesian model averaging (BMA), which is a standard method for combining predictive distributions from different sources. The BMA predictive probability density function (PDF...

متن کامل

Calibrating Multimodel Forecast Ensembles with Exchangeable and Missing Members Using Bayesian Model Averaging

Bayesian model averaging (BMA) is a statistical postprocessing technique that generates calibrated and sharp predictive probability density functions (PDFs) from forecast ensembles. It represents the predictive PDF as a weighted average of PDFs centered on the bias-corrected ensemble members, where the weights reflect the relative skill of the individual members over a training period. This wor...

متن کامل

Predicting waste generation using Bayesian model averaging

A prognosis model has been developed for solid waste generation from households in Hoi An City, a famous tourist city in Viet Nam. Waste sampling, followed by a questionnaire survey, was carried out to gather data. The Bayesian model average method was used to identify factors significantly associated with waste generation. Multivariate linear regression analysis was then applied to evaluate th...

متن کامل

Watershed model calibration using multi-objective optimization and multi-site averaging

Recent advances in optimizing watershed model calibration have focused mainly on incorporating multiple objective measures of model performance and improving optimization algorithms. However, some parameters vary widely among different calibration locations. We present a watershed model calibration method that combines multi-objective optimization with averaging across multiple calibration site...

متن کامل

Combining multiobjective optimization and Bayesian model averaging to calibrate forecast ensembles of soil hydraulic models

[1] Most studies in vadose zone hydrology use a single conceptual model for predictive inference and analysis. Focusing on the outcome of a single model is prone to statistical bias and underestimation of uncertainty. In this study, we combine multiobjective optimization and Bayesian model averaging (BMA) to generate forecast ensembles of soil hydraulic models. To illustrate our method, we use ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Geophysical Research Letters

سال: 2006

ISSN: 0094-8276

DOI: 10.1029/2006gl027126